
INTERRELATION BETWEEN VARIOUS MATHEMATICAL
MODELS OF THE DEFORMATION OF ELASTIC WHEELS
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Simulation of the rheological properties of elastic wheels by the Volterra integral equations of the second
kind with the Koltunov kernel of the nonlinear hereditary theory of viscoelasticity and by the differential
equations that under certain conditions approximately replace the adopted integral equations is suggested. The
interrelationship between two different types of mathematical models of the deformation of elastic wheels is
shown: without account for the time factor and with account for this factor, as well as of the rheological
models: integral and differential equations. For some elastic wheels the parameters of the suggested govern-
ing equations have been found from experimental data.

In agricultural, transport, and road-building mechanical engineering, of great importance is the solution of
problems of increasing the tractive-coupling properties of automobiles, tractors, and other mobile machinery, of increas-
ing the smoothness of machine running, and of optimizing the packing of deformable bases (soils, grounds, etc.) as a
result of the influence of transportation facilities. This can be favored by the application of methods that allow one to
rather accurately calculate the characteristics of the processes investigated. One is to have at one’s disposal formulas
and algorithms of calculation of the indices of interaction of wheels equipped with pneumatic tires (elastic wheels)
with deformable and with presumably undeformable (asphalt, concrete) bases. However, at the present time, the theory
of the rolling motion of elastic wheels has been developed inadequately.

The accuracy of working formulas depends primarily on the choice of governing equations that model the
regularities of the deformation of contacting bodies. In what follows, problems of the selection of mathematical models
of deformation of elastic wheels and justification of the interrelationships between various types of these models are
investigated.

Statement of the Problem. We will consider the scheme of interaction of an elastic wheel with a hard base
(Fig. 1). The scheme corresponds to the longitudinal section of the wheel of radius R with its center at the point O
that passes through the middle of the width Btir of the tire profile. The vertical load on the wheel axis is G0. The
forces acting on the wheel are not shown. The contact surface of the wheel with the base is a segment of the straight
line B1B = 2R sin ψb; the point C2 located on the ordinate axis marks the middle of this segment. The normal de-
flection of the tire f as a result of the action of the force G0 is comprised of the value CC1 equal to the vertical dis-
placement OO1 of the wheel axis and of the maximum vertical deformation hm of the tire at the zone of contact: f =
R − rdyn = OO1 + hm = OO1 + R(1 − cos ψb).

The mathematical models of the deformation of solid bodies and structures, elastic wheels in particular, fall
into two types: (1) the equations of coupling between deformations and stresses that do not include time and (2) the
equations that take into account changes in time of deformations and stresses. The former describe the curves obtained
as a result of stepwise static loading and subsequent stepwise unloading of bodies in shear and press tests in which
only stabilized (conventionally) loadings and deformations are registered at each step of loading and deformation. The
latter characterize the curves that can be obtained in various regimes of deformation with recording of loadings or
stresses σ at different fixed instants of time.

Experimentally, the regularities of the deformation of elastic wheels are revealed as a result of recording load-
ings G and deformations h corresponding to these loadings on loading and subsequent unloading of rolling wheels in
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bench tests. The experimental relationships between h and G are generally nonlinear [1]. In order to describe the cou-
pling G D h one can use (just as it is done for soils in [2, 3])

the power law

G = kh
λ
 , (1)

the equation of the hyperbolic tangent function [4] (Fig. 2a)

G = Ga tanh 
k1

Ga
 h ,

(2)

the equation that describes the generalized coupling G D h with the aid of the hyperbolic tangent function [5]
(Fig. 2b)

G = Gd 



tanh 

k2

Gd
 (h − hM) + tanh 

k2
Gd

 hM



 , (3)

the third-degree polynomials without a free term [5]

G = q1h + q2h
2
 + q3h

3
 . (4)

In a number of cases, under real loadings acting on the tire from the side of the car, with a sufficient degree
of accuracy one can adopt the linear function G(h) which is described by the Hadekel formula [1]. In a transformed
form it can be presented as

Fig. 2. Graphs of functions (2) (a) and (3) (b). G, kN; h, cm.

Fig. 1. Schematic diagram of the interaction of an elastic wheel with a hard base.
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G = Ewhh . (5)

Apart from applying stepwise static loadings, constant at each stage, with subsequent stepwise unloading, an-
other regime of deformation was implemented in a number of investigations: loading by cyclic loadings continuously
changing in time t according to the given law G(t). In both of those regimes, the diagrams of coupling between load-
ings and deformations represent closed hysteresis loops [6–11]. In continuous cyclic deformation, a phase shift of load-
ings and deformations is observed: their maxima do not coincide. Curves 1 presented in Fig. 3 describe the
experimental data obtained in bench tests.

The regularities of deformation of elastic wheels can also be revealed from experimental diagrams that char-
acterize the distribution of specific forces η(t) = (G0

 ⁄ Btir)(t) or normal stresses σ(t) that appear in rolling of a wheel
over a hard base [9, 12–14]. Curves 1 presented in Fig. 4 describe the experimental data obtained for rolling wheels.
The diagrams correspond to the longitudinal section of a wheel that passes through the middle of the tire profile
width: d = R sin ψ. The diagrams of η(t) and σ(t) reveal the same properties of elastic wheels as do the diagrams of
G(h) plotted by the results of bench tests. These analogies are especially evident if, excluding time, we transform the

Fig. 4. Lines of regression of contact specific forces and normal stresses in
rolling of elastic wheels over practically undeformable bases; a) for an auto-
mobile wheel with a tire 5.00–10 (G0 = 1.66 kN, ptir = 0.13 MPa); b) for a
tractor wheel with a tire 11.2–20 (G0 = 7.6 kN, ptir = 0.26 MPa); 1 and 2)
empirical and theoretical lines of regression. η, kN ⁄ cm; σ, MPa; d, cm.

Fig. 3. Relationship between loading and deformation on cyclic radial loading of
elastic wheels; a) with a tire 12.00–38 (ptir = 0.14 MPa); b) with a tire 12.00–18
(ptir = 0.05 MPa); 1) experiment [7, 8]; 2) calculation by Eq. (9) (1 and 2 in the
scale of Fig. 3a coincide). G, kN; h, mm.
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diagrams of η(t) into the η(h) curves (or σ(t) into σ(h)). The η(h) and σ(h) curves represent the closed hysteresis
loops. Curve 1 given in Fig. 5 is the experimental η(h) curve obtained by transformation of the η(t) plot.

Hysteresis loops are formed in all of the regimes of loading and subsequent unloading of elastic wheels; they
reveal the viscoelastic properties of wheels. These properties are also revealed in investigations of the change in time
in the amplitudes of free and forced vibrations of wheels [15, 16]. However, the governing equations (1)–(5) (of the
first type) used have substantial drawbacks. They do not allow one to take into account the phase shift of stresses and
deformations, to justify the formation of hysteresis loops on loadings and subsequent unloadings of elastic wheels, and
to develop the method of calculation of the deformation time- and rate-dependent indices of the interaction of wheels
with deformed bases. The deformations of wheels with σ < σstr are entirely reversible, but the relations of the first type
do not reflect this.

The indicated drawbacks are justifiably eliminated by using the governing relations of the second type —
rheological equations (the governing equations of viscoelasticity theory). They describe the curves that can be obtained
in different regimes and conditions of continuous deformation with recording of stresses and deformations at different
fixed instants of time.

The viscoelastic properties of elastic wheels have a number of characteristic features. It has been revealed ex-
perimentally that: 1) the areas of the hysteresis loops and the numerical values of G(h) and σ(h) on these diagrams
are practically independent of the regime of continuous deformation [8, 16]; 2) the areas of the hysteresis loops
formed during forced vibrations of elastic wheels with a constant amplitude of deformations and with different fre-
quencies of vibrations practically do not depend on the frequency of vibrations [8, 16]; 3) the rolling speed (up to 80–
100 km ⁄ h) does not influence the values and character of distribution of stresses σ(t) when a tire is in contact with a
hard base [9, 14, 17].

These experimental data are perceived as contradicting the inferences of the theories of viscoelasticity and of
attenuating vibrations of a medium in which the internal (viscous) resistance of the medium is taken proportional to
the deformation rate. Therefore, the mathematical simulation of the regularities of the deformation of elastic wheels is
encountered with difficulty.

In a number of works, the regularities of the deformation of elastic wheels are modeled by differential equa-
tions of viscoelasticity theory. The simplest of these are the equations that describe the properties of the Kelvin and
Maxwell ideal mechanical models [18], respectively:

σ = Eε + µεt′ , (6)

Fig. 5. Relationship between specific forces and deformations for an auto-
mobile wheel with a tire 5.00–10: 1) experimental curve corresponding to
curve 1 in Fig. 4a; 2) theoretical curve according an equation of the form
of (11). η, kN ⁄ cm; h, cm.
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σt′ + 
1
T

 σ = Eεt′ ,
(7)

where T = µ ⁄ E. However, the use of relations (6) and (7) suffers from substantial drawbacks. In particular, Eq. (6)
does not allow one to describe the experimentally revealed relaxation of stresses in tires as well as the diagram of
σ(t). For the Maxwell model the viscous part of the deformation is residual, whereas the deformation of elastic wheels
on unloading is reversible.

No differential equations with constant coefficients that describe the properties of ideal deformed media may
satisfactorily reflect all the features of the viscoelastic properties of elastic wheels. Rheological models in the form of
differential equations do not generalize the results of investigations represented by Eqs. (1)–(5) that do not include
time but are perceived as independent of them.

The Boltzmann–Volterra hereditary theory [19–23] is the most general one that allows simulation of the proc-
esses of deformation of viscoelastic media and structures. We will use the apparatus of the integral equations of this
theory to model the regularities of the deformation of elastic wheels in time.

We designate the radial force and the radial deformation of a wheel by G and h. We will describe the regu-
larity of radial deformation of elastic wheels in time by the Volterra linear integral equation of the second kind:

Φ [h (t)] = G (t) + ∫ 
−∞

t

K (t − τ) G (τ) dτ . (8)

Its solution has the form

G (t) = Φ [h (t)] − ∫ 
−∞

t

T (t − τ) Φ [h (τ)] dτ . (9)

In modeling the regularity of tangential deformation of an elastic wheel we will use equations similar to Eqs.
(8) and (9), where we replace G(t) and h(t) by F(t) and s(t), respectively.

The free term Φ[h(t)] in (8) is generally the nonlinear function of h. The function Φ(h) describes the line
Gdir = Φ(h) which will be called by us the directrix of the hysteresis loop. The interrelated functions K(t) and T(t),
which are the kernel and resolvent of Eq. (8), also called the functions of the creep and relaxation rates, allow one to
take into account the influence of the previous stressed state of the tire on its stressed state at the given instant of
time.

In modeling the coupling between stresses σ and deformations h in the case of the rolling of wheels the fol-
lowing equations will correspond to Eqs. (8) and (9):

Φ [h (t)] = σ (t) + ∫ 
−∞

t

K (t − τ) σ (τ) dτ , (10)

σ (t) = Φ [h (t)] − ∫ 
−∞

t

T (t − τ) Φ [h (τ)] dτ . (11)

To obtain a rather accurate description of experimental data by Eqs. (8) and (10) it is necessary that the functions K(t)
and T(t) could satisfy certain conditions [21, 22]. As functions of the creep and relaxation rates we have taken the fol-
lowing functions that satisfy these conditions:

K (t) = 
exp (− βt)

t
  ∑ 

n=1

∞

 
[AΓ (α)]n

 t
αn

Γ (αn)
 ,   0 < α < 1 ; (12)
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T (t) = A exp (− βt) tα−1 (13)

(the Koltunov kernel and the Rzhanitsyn kernel, respectively). Having replaced the independent variable τ in (9) by
Θ = t − τ, we obtain

G (t) = Φ [h (t)] − ∫ 
0

∞

T (Θ) Φ [h (t − Θ)] dΘ . (14)

The laws of viscoelastic deformation of elastic wheels are subdivided into linear and nonlinear. The experi-
mental hysteresis loops obtained in radial or tangential continuous deformation of elastic wheels in the region of
linearity of their properties have the shape of an ellipse [7, 12, 23] (Fig. 3a), whereas in the region of nonlinearity of
properties they have a different shape [8, 9] (curves 1 in Fig. 3b and Fig. 5). The linearity or nonlinearity of the prop-
erties of an elastic wheel with a tire of the given construction depends on the amplitude of loading Gm (or the ampli-
tude of deformation hm) and the internal pressure of air in the tire ptir.

Let an elastic wheel possess linear properties. In this case, the directrix of the diagrams of G = G(h) and
σ = σ(h) is a straight line, Φ(h) = qh. Then Eq. (14) will acquire the form

G (t) = q 



h (t) − ∫ 

0

∞

T (Θ) h (t − Θ) dΘ



 . (15)

In describing the dependence σ = σ(h), the quantity G(t) on the left-hand side of Eq. (15) is replaced by σ(t).
We will consider a steady regime of the deformation of a wheel according to the sinusoidal law:

h (t) = hm sin ωt . (16) 

In this case, from (15) it follows that

G (t) = qhm [A (ω) cos ωt + (1 − B (ω)) sin ωt] , (17)

where

A (ω) = ∫ 
0

∞

T (Θ) sin ωΘ dΘ ;   B (ω) = ∫ 
0

∞

T (Θ) cos ωΘ dΘ . (18)

For function (13) we have

A (ω) = AΓ (α) sin (αϕ1) ⁄ ρ
α

 ,   B (ω) = AΓ (α) cos (αϕ1) ⁄ ρ
α

 , (19) 

where ρ = √β2 + ω2 ; tan ϕ1 = ω ⁄ β [19]. The parameters of the function (13) can be selected so that Eq. (15) will
take the form

G (t) = Gm sin (ωt + ϕsh) ,   (20)

where Gm = Ewhhm.
To determine the parameters of the function (13), we will find the values of A(ω) and B(ω) from experimen-

tal data with the aid of the formulas that follow from Eq. (17):

A (ω) = G (0) ⁄ (qhm) ,   B (ω) = 1 − G (π ⁄ 2ω) ⁄ (qhm) . (21)
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Having excluded the time t from Eqs. (16) and (20), we obtain the equation of an ellipse. It can also be ob-
tained if one proceeds from the sinusoidal law of a change in loading: G(t) = Gm sin ωt. This shows that Eq. (15)
with the influence function (13) exactly describes the regularities in the deformation of elastic wheels by the harmonic
law in the region of linearity of their properties.

In order to find A(ω) and B(ω) from Eq. (21) we will consider the diagrams of G(h) in a rectangular coordi-
nate system hG, the axis G of which passes through the middle of the segment of length 2hm equal to the doubled
amplitude of the deformation of the "loading–unloading" cycle (Fig. 3a). The directions of the coordinate axes and of
the tracing of the hysteresis loop are selected such that π ⁄ 2 < ϕsh < π should hold. In this coordinate system the direc-
trix D

__
1F
__

1 is symmetrical with the ellipse diameter G = G(h) that passes through the points D1(hm, G(hm)) and
F1(−hm, G(−hm)).

The shift of the phases of loadings and deformations is taken into account with the aid of the function
T(t − τ) > 0. The larger the eccentricity of the ellipse, i.e., the smaller the value of ϕsh, the smaller values the function
T(t − τ) has at the same t. When ϕsh → 0, we obtain G(0) → 0, G(π ⁄ 2ω) → Gm, q → Ewh. If we adopt conventionally
that T(t − τ) = 0 at any t, then A(ω) = B(ω) = 0, ϕsh = 0, and the directrix will occupy the position of the diagonal
DF of the rectangle with sides 2hm and 2Gm, with the ellipse being inscribed into this rectangle (Fig. 3a). At T(t − τ)
= 0 the deformations will be elastic and the ellipse will degenerate into the DF segment of the straight line. We will
call it the theoretical straight line of linear elasticity. For a linearly resilient elastic wheel dependence (5) holds.

Let an elastic wheel possesses nonlinear viscoelastic properties. In this case, the directrix of the hysteresis
loop G(h) takes the form of a curve (Fig. 3b, line F10D1). When ϕsh → 0, it tends to the position of the theoretical
curve of nonlinear elasticity. At loadings smaller than the limit of the carrying ability of the tire, the theoretical curves
of the nonlinear elasticity and the directing curves corresponding to them Gdir = Φ(h) can be concave and convex
(Fig. 2a, Fig. 3b), and they can also have concave and convex portions (Fig. 2b). Our theoretical investigations and
calculations have shown that generally the curves Gdir = Φ(h) may be characterized by equations of the form (3) (in
this case, in Fig. 2 we have G = Gdir). The convex directing curves are described by an equation of the form of Eq.
(2). An equation of the form of (3) of the curve Gdir = Φ(h) can be approximated very accurately by polynomial (4).

Results of Calculations. We have developed a technique for determining the parameters of Eqs. (9) and (11)
with kernel (13) that model the viscoelastic properties of elastic wheels by means of processing experimental closed
hysteresis loops obtained on deformation of wheels according to the law (16). By the proposed technique we have
found the characteristics of the viscoelastic properties of a number of automobile and tractor wheels (Tables 1 and 2).
For the experimental data presented in Table 1, in the equation of the directrix (4) the parameter q3 = 0. It has been

TABLE 1. Characteristics of the Viscoelastic Properties of Elastic Wheels (according to the results of bench tests on cyclic
deformation, by loadings varying in time)

Properties of
deformations

Source of
information Tires ptir, MPa Form of loading hm, cm

Parameters of Eq. (9)

A α a1, kN ⁄ cm a2, kN ⁄ cm2

Linear

[7] 12.00—38 0.14 Radial 1.88 0.0122 0.006 2.696 0

[7] 12.00—38 0.08 Same 0.64 0.0309 0.015 2.585 0

[9] 5.00—10 0.13
Tangential at

Grad = 1.66 kN 0.22 0.0204 0.010 3.574 0

Nonlinear

[11] 9.00—20 0.3 Radial 4.9 0.0101 0.005 3.795 0.094

[8] 12.00—18 0.05 Same 6.75 0.0227 0.011 0.889 0.0421

[9] 6.40—13 0.2
Tangential at

Grad = 0.77 kN 0.28 0.0312 0.015 4.400 –1.441

TABLE 2. Characteristics of the Viscoelastic Properties of Elastic Wheels with a Width of 9.00–20 (according to the results
of investigation of the rolling of wheels over a hard base)

Source of
experimental data

ptir, MPa G, kN hm, mm
Parameters of Eq. (11)

A α q1, MPa ⁄ mm q2, MPa ⁄ mm2 q2, MPa ⁄ mm3

[13] 0.45 15.5 7.0 0.0060 0.003 0.0410 0.0058 0.0006

[12] 0.53 18.6 7.0 0.0101 0.005 0.0256 0.0043 0.0004
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found that according to the experimental data at the obtained values of the parameters A, α, β, q1, q2, and q3 the cal-
culated values of G(t) and of the areas of hysteresis loops are virtually independent of the regime of continuous cyclic
deformation in a harmonic manner. The values of G(t) (curves 2 in Fig. 3b and Fig. 5) calculated by us with a high
degree of accuracy coincide with the corresponding experimental values (curves 1 in the indicated figures), with prac-
tically complete coincidence for linearly deformed wheels (see Fig. 3a).

We assume that T(t − τ) = p exp (−p(t − τ)); then K(t − τ) = p. In the case of deformation of an elastic wheel
in a harmonic manner with frequency ω, we assume that p = ωg, where g is the dimensionless parameter independent
of ω. Let Φ(h) = qh. Having differentiated Eq. (8) under these conditions with respect to time t, we obtain

Gt
′ + ωgG = qht′ . (22)

The solution of Eq. (22) that corresponds to deformation by law (16) exactly describes G(t) in the case of the
linearity of the properties of an elastic wheel. At q = const and g = const, the calculated area of the hysteresis loop
that corresponds to the modeling of the properties of an elastic wheel by Eq. (22) with parameters q and g is inde-
pendent of ω, in agreement with experimental data. We have found that

q = Gm
 ⁄ (hmcos ϕsh) ,   g = tan ϕsh . (23)

If ϕsh → 0, then g → 0, q → Gm
 ⁄ hm = Ewh. Thus, g characterizes the viscous properties of an elastic wheel and q —

its elastic and viscous properties. We have developed a technique for determining the characteristics g and q of vis-
coelastic properties of an elastic wheel. Using this technique, the values of g and q have been found for certain auto-
mobile and tractor wheels.

Calculations have shown that Eq. (22) can be used to approximately describe the regularities of the deforma-
tion of viscoelastic wheels that have nonlinear properties. The higher the rigidity of a wheel and smaller the vertical
loading on its axis, the smaller the errors in the determination of G(t) on replacing Eq. (8) by Eq. (22).

In order to solve certain practical problems we should consider the regimes of deformation of wheels in
which forces or stresses at each instant of time are to be found with consideration for the boundary-value conditions.
We obtain the governing equation that corresponds to this requirement and that models the couplings between stresses
σ and deformations h in rolling of wheels. We will differentiate (22) with respect to t, and in the equation obtained
we replace the loading G by the stress σ and the parameter q by the parameter q

_
. This will yield

σtt′′ + ωgσt′ = q
_
htt′′ . (24)

Let, in rolling of a wheel, the curves σ(t) be obtained. We use Eq. (24) to describe the function σ(t) that sat-
isfies the boundary-value condition σ(0) = 0 and σ(tint) = 0. In accordance with the scheme of interaction of a rolling
elastic wheel with a nondeformed base (Fig. 1),

h = R (sin (α0 + ωt) − sin α0) , (25)

where α0 = π ⁄ 2 − ψb; t 2 [0, tint]. Having replaced t in Eq. (25) by the new variable ψ = ψb − ωt, we obtain the
general solution of Eq. (24) in the form

σ (ψ) = q
_
R (C~1 + C

~
2 exp (− g (ψb − ψ)) + cos ψ + g sin ψ) ⁄ (g2

 + 1) . (26)

We find the arbitrary constants C
~

1 and C
~

2 from the boundary-value conditions σ(ψb) = 0 and σ(−ψb) = 0.
By applying Eq. (26) we may find the parameters of Eq. (24) by processing the diagrams of normal contact

stresses recorded for elastic wheels rolling over hard bases. We have developed the corresponding procedure of deter-
mining the values of g and q

_
 and by it these values have been found for some elastic wheels. The values of σ ob-

tained from Eq. (26) are independent of the rolling speed. The theoretical plots constructed from the results of
calculations by this equation with the found values of the characteristics g and q

_
 rather accurately approximate experi-

mental diagrams (Fig. 4a).
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We have carried out Fisher-criterion checking at a 5%-significance level of the adequacy of describing the
stress σ by Eq. (24) in the region of the nonlinearity of the viscoelastic properties of elastic wheels. It has proved the
validity of Eq. (24) for modeling the regularity of the change of σ for many elastic wheels in this region. At the same
time, it was shown that in the region of the nonlinearity of the properties of elastic wheels integral equations (8) and
(10) model these properties more accurately than differential equations (22) and (24).

Thus, the results obtained demonstrate the interrelationship of two types of rheological models for elastic
wheels: integral and differential equations.

At ψsh = 0, the diagram of σ(ψ) becomes symmetrical with the maximum that corresponds to ψ = 0 and that
of σ(d) — symmetrical with the maximum that corresponds to d = 0 (curve 1 in Fig. 4b). The loading and unloading
branches on the hysteresis loops virtually coincide, i.e., elastic wheels undergo deformation as virtually resilient ones
(straight line 1 in Fig. 6). The regularity of the deformation of linearly elastic wheels is described by Eq. (5) or for
σ = σ(h) by

σ = E
__

whh . (27)

We have worked out the calculation method of determining the coefficient E
__

wh and, using it, we have found the co-
efficients E

__
wh of some elastic wheels depending on G0, ptir, and the construction parameters of wheels. The value of

E
__

wh in theoretical relation (27) represented by straight line 2 in Fig. 6 was calculated by the method suggested by us.
The mean relative deviation and mean standard deviation of the calculated values of E

__
wh from the corresponding ex-

perimental ones for wheels with tires 11.2–20 are equal to 7.12 and 4.52%. The discrepancies do not exceed experi-
mental errors.

Let, in bench tests, there be stepwise static loading of an elastic wheel by radial loadings constant at each
stage. In this case, in accordance with the available experimental data the relationship between the deformations and
loadings varying in time will be described in the region of nonlinearity of the properties of an elastic wheel by the
integral equation

Φ0 (h) = G (t) + ∫ 
0

t

K (t − τ) G (τ) dτ (28)

with kernel (12). In (28), G = Φ0(h) is the equation of the curve of instantaneous deformation or of the isochronous
curve G = G(h) at t = 0 [21].

Assuming in (28) that G(t) = Gi = const, we obtain the equations of the creep curves:

Φ0 (h) = Gi f
~
 (t) ,   i = 1, 2, ..., r , (29)

where

Fig. 6. Relationship between normal contact stresses and deformations for a
tractor wheel with a tire 11.2–20: 1) the straight line corresponding to ex-
perimental curve 1 in Fig. 4b; 2) the straight line corresponding to Eq. (27).
σ, MPa; h, cm.
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f
~
 (t) = 1 + ∫ 

0

t

K (τ) dτ . (30)

Relation (29) reflects the fact of the similarity of isochronous curves, i.e., of the curves of the relations G =
Φj(h) at different fixed instants of time t = tj = const (j = 1, 2, ...). Figure 7I presents a family of creep curves h(t)
at different values of Gi and Fig. 7II the corresponding graphs of isochronic curves G = Φj(h) at different values of t
of the elastic wheel the properties of which are modeled by Eq. (28) with kernel (12). The characteristics of the vis-
coelastic properties of the wheel are: α = 0.025, β = 0.05, A = 0.0176, q1 = 6.5 kN ⁄ cm, q2 = −1.9 kN ⁄ cm2, and
q3 = 0. In constructing the graphs the numerical values of function (30) given in [21] were used.

If, during the action of the force Gi, the stresses in a tire do not exceed its limit of carrying ability, limited
creep appears. In this case, it is possible, by using the theoretical value of function (30) at t corresponding to the time
of conventional stabilization of deformation, to find the curve of the limiting state G = Φ∞(h), that is, an isochrone
with the mark t = ∞. The curves G = Φ0(h) and G = Φ∞(h) limit, respectively from above and from below, the entire
possible region of deformation of the elastic wheel. The lines G = Φ0(h) and G = Φ∞(h) that correspond to the same
family of creep curves are similar and can be approximated by equations of the same form. These are Eqs. (2)–(4). In
the region of linearity of the properties of a viscoelastic wheel the graphs of the functions G = Φ0(h) and G = Φ∞(h)
are straight lines the equations of which have the form Φ0(h) = (Ewh)0h and Φ∞(h) = (Ewh)∞h. If a wheel is deformed
as a linearly elastic one, the graphs of the functions G = Φ0(h) and G = Φ∞(h) coincide; the dependence G = G(h) is
described by Eq. (5).

The application of Eq. (28) makes it possible to supplement and generalize the results of investigations on
mathematical simulation of the regularities of the deformation of elastic wheels without allowance for the factor of
time, to reveal the interrelationship between two different types of mathematical models of deformation of elastic
wheels — without allowance for the factor of time and with its allowance. Indeed, on the basis of Eq. (29), any of
the governing equations of the first type can be considered as the equation of an isochrone with the mark t = tst,
which is the time of conventional stabilization of deformation at each stage of unloading in static tests, without allow-
ance for the factor of time. Mathematical models without allowance for the factor of time are transferred into rheologi-
cal equations by using the values of function (30).

The proposed mathematical models of deformation of elastic wheels can be used as governing equations in
calculations for selecting optimal construction parameters of the running gears and regimes of operation of mobile
power facilities.

Fig. 7. Creep on radial loading of a resilient viscoelastic wheel (hm = 0.4 cm):
I) creep curves [1) G = 0.25; 2) 0.5; 3) 1.0; 4) 1.5]; II) isochronic curves [1)
t = 0.2; 2) 1.0]; a and b) calculated curves G = Φ0(h) and G = Φ∞(h), respec-
tively. G, kN; h, cm; t, sec.
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CONCLUSIONS

1. Mathematical models of the deformation of elastic wheels under different conditions of their loading are
suggested and justified: integral equations (8), (10), (28) with kernel (12) and differential equations (22) and (24). In
solving the problems of interaction of mobile machines with various bearing bases, Eq. (24) is recommended as the
governing one for elastic wheels.

2. The regularity of radial deformation of linearly resilient elastic wheels is modeled in determining the func-
tions G(h) and σ(h) by Eqs. (5) and (27), respectively.

3. The methods of determining the characteristics of viscoelastic and elastic properties of elastic wheels from
experimental data have been developed and implemented for a number of automobile and tractor wheels.

4. Based on the use of the proposed governing integral equations, the interrelationship between two different
types of mathematical models of deformation of elastic wheels — without account for the factor of time and with its
account — has been revealed, as well as the interrelationship of two rheological models: integral and differential equa-
tions. This allows one to justifiably determine the conditions and limits of applicability of each of the equations in solv-
ing practical problems of the selection of optimal construction parameters and regimes of operation of mobile machines.

NOTATION

A, α, β, characteristics of the viscoelastic properties of an elastic wheel (the parameters of the Koltunov ker-
nel and Rzhanitsyn kernel) determined experimentally; A(ω) and B(ω), sine and cosine of the transformation of the
function T(Θ) in Eq. (15); Btir, width of the tire profile, m; C

~
1 and C

~
2, arbitrary constants in Eq. (26); d, abscissas of

the points on the line of contact of an elastic wheel with a hard base, cm; E, elasticity modulus of a medium or ma-
terial, MPa; Ewh, elasticity coefficient of an elastic wheel in Eq. (5), kN ⁄ cm; E

__
wh, elasticity coefficient of an elastic

wheel in Eq. (27), MN ⁄ m3; (Ewh)0 and (Ewh)∞, instantaneous and limiting coefficients of the elasticity of a viscoelas-
tic elastic wheel, kN ⁄ cm; F(t), shearing force in tangential deformation of an elastic wheel, kN; f, normal tire deflec-
tion, m; f

~
(t), flexibility function; G0, vertical loading on the wheel axis in its rolling over hard base, kN; Ga, limit of

the carrying ability of a tire, kN; Gd = Ga − GM, difference between the carrying ability of a tire and loading GM at
the inflection point M in the graph of function (3), kN; Gdir, loading corresponding to the points of the directrix of
the hysteresis loop, kN; GM, loading corresponding to the points of the inflection points of the curve described by Eq.
(3), kN; Gm, amplitude of loading, kN; G(t), vertical loading on the wheel axis during its radial deformation in bench
tests, kN; G ′(t), first derivative of G(t) in time; Grad, radial loading on the wheel axis on its tangential deformation,
kN; g, characteristic of the viscous properties of an elastic wheel; h, current value of the compression deformation of
a tire in the zone of contact with the base, cm; hm, maximum deformation of a tire at the zone of its contact with a
hard base (deformation amplitude), cm; hM, abscissa of the inflection point M in the graph of function (3), cm; ht′,
first derivative of h(t) in time; htt′′, second derivative of h(t) in time; (h

~
, η~), coordinates of the points of the η(h

~
) curves

in the coordinate system h
~
D1η

~ (Fig. 5), cm, kN ⁄ cm; K(t), kernel of integral equation (8); k, empirical coefficient in
Eq. (1); k1, angular coefficient of the tangent drawn to the graph of function (2) at the coordinate origin; k2, angular
coefficient of the tangent to the graph of function (3) at the inflection point (hM, GM) (Fig. 2b); p, parameter in the
function T(t − τ), cm−1; ptir, internal pressure of air in the tire, MPa; q, angular coefficient of the directrix of a straight
hysteresis loop of a viscoelastic resilient wheel in the region of the linearity of its properties, the parameter of the
governing differential equation (22), kN ⁄ cm; q

_
, parameter of the governing differential equation (24) for an elastic

wheel (the characteristic of the viscoelastic properties of an elastic wheel, MN ⁄ m3; q1, q2, q3, coefficients in Eq. (4),
kN ⁄ cm, kN ⁄ cm2, kN ⁄ cm3; R, radius of the outside circle of the tire, m; rdyn, dynamic radius of an elastic wheel (in
rolling) or static radius of an elastic wheel (on deformation of an unrolling wheel), m; s, shear strain on tangential de-
formation of an elastic wheel, cm; T, period of relaxation of a medium or material, sec; T(t), resolvent of the integral
equation (8); t, time, sec; tint, time of interaction of a wheel with a base on one rotation of the wheel around its axis,
sec; tst, time of conventional stabilization of deformation at each stage of loading in static tests without account for
the factor of time, sec; vax, velocity of the wheel axis, m ⁄ sec; α0, angle characterizing the position of the point B at
which the wheel enters into contact with the base (Fig. 1 and Eq. (25)), rad; Γ(α), gamma-function; ε, relative defor-
mation of compression; η, specific forces (per unit width of the tire profile), kN ⁄ cm; Θ, integration variable; λ, expo-
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nent in Eq. (1) (empirical coefficient); µ, viscosity coefficient, MPa⋅sec; ρ, parameter in Eqs. (19); ϕ1, parameter in
Eqs. (19); σ, compressive stress, MPa; σt′, first derivative of σ(t) in time; σtt′′, second derivative of σ(t) in time; σstr,
ultimate strength, MPa; σ(ψ), stress of tire compression at the points of the line of contact of an elastic wheel, MPa;
τ, current value of time in Eqs. (8) and (9) that precedes the time moment t, sec; Φ[h(t)], free term in Eqs. (8) and
(9); Φ0(h), curve of instantaneous deformation (isochrone with mark t = 0); Φ∞(h), curve that characterizes stabilized
deformations of a tire (isochrone with mark t = ∞); ϕsh, angle of deformation phase shift relative to the loading phase,
rad; ψ, current value of the angle of contact of a tire with a base, deg; ψb, angle equal to half the central angle of
the circle of radius R that corresponds to the chord B1B (Fig. 1) and respectively equal to the maximum angle contact
of a wheel in Eq. (26), deg; ω, frequency of the harmonic process of deformation (angular velocity of a rolling
wheel), sec−1. Subscripts and superscripts: a, asymptote; ax, wheel axis; b, half the angle of contact of an elastic wheel
with a hard base (corresponding to point B in Fig. 1); d, difference; dir, directrix; dyn, dynamic; int, interaction; i,
number of the creep curve; j, number of isochronic curve corresponding to a fixed moment of time tj; m, maximum;
n, ordinal number of the series term in Eq. (12); r, number of creep curves in the family (i = 1, 2, ..., r); rad, radial
(loading); sh, shift (of loading phases and deformation); st, stabilization; str, strength; t, first derivative in time; tt, sec-
ond derivative in time; tir, tire; wh, wheel; ′ and ′′, first and second derivatives of a function.
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